
PostgreSQL 15

and beyond

Amit Kapila
PostgreSQL Committer

and Major Contributor

Fujitsu-Public 2 © Fujitsu 2022

● Ongoing version upgrades once a year

● Enhanced support for large volume data in recent years

6.0

First PostgreSQL Release
Inherits Postgres project at the

University of California, Berkeley, which
had been running since 1986

1997

9.0

• Streaming Replication

2010

9.1

• Synchronous Replication

• Foreign tables

• Unlogged tables

2011

9.2

• Index-only scans

• json data type

2012

9.4

• jsonb data type

2014

9.3

• Update to Foreign
Data Wrapper

• Materialized views

2013

10

• Declarative Partitioning

• Logical Replication

2017

11

• SQL stored procedures

• Partitioning by hash key

2018

12

• Partitioning performance
enhancements

• Table Access Methods

2019

13

• De-duplication in B-tree index

• Incremental sorting

• Parallelized vacuum for indexes

2020

14

• Snapshot scalability (better reads)

• Logical Replication for in-progress xacts

• Reduce bloat for B-tree index updates

• Parallel foreign table scans via
postgres_fdw

2021

9.5

• Row-level security

• BRIN Index

2016 (Jan)

9.6

• Parallel Sequential Scan

• Multiple standby servers in
sync rep

2016 (Sep)

15

2022

• Merge command

• Shared memory stats

• Row/Column Filtering in
Logical Replication

• Server-side compression for
backups

16

2023 (Q3)

Evolution of the OSS database PostgreSQL

Agenda

● Key features in PostgreSQL 15

● Performance improvements in PostgreSQL 15

● PostgreSQL 16 and beyond

● Key features in PostgreSQL 15

● Performance improvements in PostgreSQL 15

● PostgreSQL 16 and beyond

Agenda

5 © Fujitsu 2022
Fujitsu-Public

SQL-Merge

● Command handles inserts, updates, and deletes, all in a single transaction

● Attempts to insert a new product – if the given products already exists, then update those,

otherwise delete them

1/2

MERGE INTO TargetProducts Target

USING SourceProducts Source

ON Source.ProductID = Target.ProductID

WHEN NOT MATCHED AND Source.ProductId IS NOT NULL THEN

INSERT VALUES (Source.ProductID, Source.ProductName, Source.Price)

WHEN MATCHED AND Target.ProductName IN ('Table', 'Desk') THEN

UPDATE SET ProductName = Source.ProductName, Price = Source.Price

WHEN MATCHED THEN

DELETE;

6 © Fujitsu 2022
Fujitsu-Public

SQL-Merge

● Ensures that the join produces at most one candidate change row for each target row

● Otherwise, it will lead to error "MERGE command cannot affect row a second time"

● For each candidate change row, the first clause to evaluate as true is executed

● No more than one WHEN clause is executed for any candidate change row

● One common use case is while trying to maintain Slowly Changing Dimensions (SCD) in a data

warehouse. In such cases, one needs to:

● Insert new records into the data warehouse,

● Remove records from the warehouse which are not in the source anymore, and

● Update values in the warehouse which have been updated in the source

2/2

7 © Fujitsu 2022
Fujitsu-Public

Base backups

● Allows to specify targets for backups

● Backup location can be specified using -t target or --target=target

● client: Default value

● server: Stores backup on server

● blackhole: Discards the contents, used only for testing and debugging purpose

● This option cannot be used with default WAL streaming option –Xstream

● Backups can be compressed

● Server-side compression

● Client-side compression

● Compression options: gzip, LZ4, and Zstandard

● Client-side: gzip was supported prior to 15

● Allows faster and smaller backups

8 © Fujitsu 2022
Fujitsu-Public

WAL

● Full Page Writes can be compressed using LZ4 and Zstandard compression

● Previously, PGLZ was used

● User can specify the compression method via GUC wal_compression

● WAL archiving via loadable modules

● Currently, the continuous archiving is done via shell commands

● This new feature allows users to create custom modules for continuous archiving

● Although archiving via a shell command is much simpler, a custom archive module will often be

considerably more robust and performant

● For example, if the archiving destination path already exists and has contents identical to source

path, we can allow archiving to succeed via custom module

● Users can use GUC archive_library to specify a library that can be used to archive a logfile

segment

9 © Fujitsu 2022
Fujitsu-Public

Stats/Log

● Stores statistics in shared memory

● No more UDP transfer for stats

● No more writing to temp files

● The stats in shared memory will be written once at server shutdown

● The prior stats state is restored after shutdown and restart of server

● The stats are discarded on restarting server after a crash

● Allows log output in JSON format

● log_destination=jsonlog

● This is the 3rd type of destination of this kind, after stderr and csvlog

● The format is convenient to feed logs to other applications

1/2

10 © Fujitsu 2022
Fujitsu-Public

Stats/Log

● New stats in pg_stat_statements

● I/O timing for temp files

● JIT counters

● Extended statistics (CREATE STATISTICS …) to record statistics for a parent with all its children

● Regular statistics already tracked this information

● Improve queries that involve processing the inheritance tree as a whole

2/2

11 © Fujitsu 2022
Fujitsu-Public

Logical replication improvements

● Adds support for prepared transactions to built-in logical replication

● Reduces the lag to replicate data

● This provides the base to build conflict-free logical replication

● Allows publication of all tables in a schema

● Tables added later to the listed schemas will also be replicated

CREATE PUBLICATION mypub FOR ALL TABLES;

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=postgres'

PUBLICATION mypub WITH (two_phase = true);

1/4

CREATE PUBLICATION mypub FOR TABLES IN SCHEMA mysch;

CREATE PUBLICATION mypub FOR TABLE mytab, TABLES IN SCHEMA mysch;

12 © Fujitsu 2022
Fujitsu-Public

Logical replication improvements

● Allows publication content to be filtered using a WHERE clause

● This can help distribute data among nodes and improve performance by sending data selectively

● The WHERE clause allows only simple expressions

● It cannot contain user-defined functions, operators, types, collations, system column

references or non-immutable built-in functions

● If a publication publishes UPDATE or DELETE operations, the row filter WHERE clause must

contain only columns that are covered by the replica identity

● If a publication publishes only INSERT operations, the row filter WHERE clause can use any

column

2/4

CREATE PUBLICATION mypub FOR TABLE mytab WHERE (c1 > 10);

13 © Fujitsu 2022
Fujitsu-Public

Logical replication improvements

● Allows publications to publish specific columns for tables

● The choice of columns can be based on behavioral or performance reasons

● A column list can contain only simple column references

● A column list can't be specified if the publication also publishes FOR TABLES IN SCHEMA

● If a publication publishes UPDATE or DELETE operations, any column list must include the table's

replica identity columns

● If a publication publishes only INSERT operations, then the column list may omit replica identity

columns

● Allows logical replication to run as the owner of the subscription

● Only superusers, roles with bypassrls, and table owners can replicate into tables with row-level

security policies

3/4

CREATE PUBLICATION mypub FOR TABLE mytab (c1, c2);

14 © Fujitsu 2022
Fujitsu-Public

Logical replication improvements

● Conflict resolution

● Current methods:

● By manually removing the conflicting data

● By skipping the transaction via pg_replication_origin_advance

● A new method:

● By specifying LSN of the conflicting transaction

● Information related to LSN of failed transaction will be available in server logs

● Users can set a parameter to automatically disable replication on conflict

● Useful for scenarios where a retry could not possibly succeed without human intervention

● New system view – pg_stat_subscription_stats

● Shows stats about errors which occurred during the application of logical replication changes

or during initial table synchronization

4/4

ALTER SUBSCRIPTION mysub SKIP (lsn = 0/14C0378)

15 © Fujitsu 2022
Fujitsu-Public

SQL

● Allows ICU collations to be set as the default for clusters and databases

● Allows unique constraints and indexes to treat NULL values as not distinct

1/3

initdb --locale-provider=icu --icu-locale=en

CREATE DATABASE dbicu LOCALE_PROVIDER icu ICU_LOCALE 'en-u-kf-upper'

CREATE TABLE mytab(c1 text UNIQUE NULLS NOT DISTINCT);

INSERT INTO mytab VALUES('amit');

INSERT INTO mytab VALUES(NULL);

INSERT INTO mytab VALUES(NULL);

ERROR: duplicate key value violates unique constraint "mytab_c1_key"

DETAIL: Key (c1)=(null) already exists.

16 © Fujitsu 2022
Fujitsu-Public

SQL

● ON DELETE, partially SET NULL

2/3

CREATE TABLE fktable (… FOREIGN KEY (tid, id) REFERENCES pktable ON DELETE SET NULL (id));

postgres=# delete from pktable where id = 2;

DELETE 1

postgres=# select * from fktable;

tid | id | foo

-----+----+-----

1 | 1 | 1

1 | | 1

(2 rows)

● This is useful for multitenant or sharded schemas, where the tenant or shard ID is included in the

primary key of all tables but shouldn't be set to null.

17 © Fujitsu 2022
Fujitsu-Public

SQL

● CREATE DATABASE new option – STRATEGY

● WAL_LOG

● Database will be copied block by block, and each block will be separately written to the WAL

● Checkpoints are not required

● Avoids the impact on overall system due to checkpoint

● Efficient strategy for small databases

● Default

● FILE_COPY

● Current method

● Writes a small record to the write-ahead log for each tablespace used by the target database

● Each such record represents copying an entire directory to a new location at the filesystem level

● Reduces WAL volume for the large template database

● Performs checkpoint both before and after operation, which can impact system performance

3/3

18 © Fujitsu 2022
Fujitsu-Public

Privileges

● Granting SET and ALTER SYSTEM privileges for superuser GUC parameters

● This allows to set superuser server parameters via non-superuser roles

● Predefined role pg_checkpoint

● Allows members to run CHECKPOINT

● Previously, checkpoints could only be run by superusers

● Security invoker views

● Checks permissions for base relations using the privileges of the user of the view

● Default is to check using the privileges of the view owner

GRANT SET ON PARAMETER wal_compression TO bob;

GRANT ALTER SYSTEM ON PARAMETER wal_compression TO bob;

CREATE VIEW myview WITH (security_invoker=true) AS SELECT * FROM mytab;

● Key features in PostgreSQL 15

● Performance improvements in PostgreSQL 15

● PostgreSQL 16 and beyond

Agenda

20 © Fujitsu 2022
Fujitsu-Public

Sorting

● Improved performance and reduced memory consumption of in-memory sorts

● Improved performance of single column sorts by more than 25%

● Only when the result also contains single column

● Will be used for SELECT col1 from mytab ORDER BY col1;

● Will not be used for SELECT col1, col2 from mytab ORDER BY col1;

● Reduced memory consumption by using generation memory context

● We were using memory allocation scheme that rounded requests to the next power of 2

● Performance improvement depends on tuple size, but up to ~40% improvement is observed

● Reduced function call overhead by adding specialized sort routines for common datatypes

● Performance improvement: ~5%

1/2

21 © Fujitsu 2022
Fujitsu-Public

Sorting

● Improved performance for sorts that exceed work_mem

● Switched to a batch sorting algorithm that uses more output streams than before

● Performance improvement depends on work_mem – the smaller the work_mem, the greater is

the improvement

● Performance improvement: ~40%

● For further details, see blog

2/2

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/speeding-up-sort-performance-in-postgres-15/ba-p/3396953#:~:text=Change%201%3A%20Improvements%20sorting%20a,algorithm%20with%20k%2Dway%20merge

22 © Fujitsu 2022
Fujitsu-Public

postgres_fdw

● Allows parallel commit on postgres_fdw servers

● Enabled by the parallel_commit option via CREATE/ALTER SERVER

● Commits the transaction in parallel on all foreign servers involved in local transaction

● This can improve performance of distributed PostgreSQL clusters using postgres_fdw

23 © Fujitsu 2022
Fujitsu-Public

Partitioning

● Ordered scans of partitions in more cases

● Allows optimization when DEFAULT and LIST partitions containing multiple values gets pruned

● Uses Append instead of MergeAppend

● Improved performance by avoiding the need to sort

● Improved planning time for statements where only few of the partitions are relevant

24 © Fujitsu 2022
Fujitsu-Public

Parallelism

● Parallelized SELECT DISTINCT

● Introduces two-phase DISTINCT

● Phase 1 is performed on parallel workers

● Rows are made distinct there either by hashing or by sort/unique

● Phase 2 is performed by leader backend

● Removes duplicate rows that appear due to combining rows for each of the parallel workers

SELECT DISTINCT four FROM tenk1;
QUERY PLAN

--
Unique
-> Sort

Sort Key: four
-> Gather

Workers Planned: 2
-> HashAggregate

Group Key: four
-> Parallel Seq Scan on tenk1

25 © Fujitsu 2022
Fujitsu-Public

Recovery/Replay

● Speeded up recovery/replay by prefetching needed file contents

● recovery_prefetch: When enabled, looks ahead in the WAL and try to initiate asynchronous

reading of referenced data blocks not yet cached in our buffer pool

● Works where posix_fadvise() is available

● wal_decode_buffer_size: Maximum distance to read ahead in the WAL to prefetch

referenced data blocks

26 © Fujitsu 2022
Fujitsu-Public

Vacuum

● Allows vacuum to be more aggressive in setting the oldest frozenxid

● Before 15, vacuum set it to whatever value was used to determine which tuples to freeze – the

FreezeLimit cutoff

● Now, we set it to value <= the oldest extant XID remaining in the table

● This can be much more recent than FreezeLimit

● This will help in reducing the times anti-wraparound vacuum is invoked for certain workloads

27 © Fujitsu 2022
Fujitsu-Public

Changes in PostgreSQL 15

● New features and enhancements

● Support for the SQL MERGE command

● Selective publication of tables' contents within logical replication publications, through the ability

to specify column lists and row filter conditions

● More options for compression, including support for Zstandard (zstd) compression

● Includes support for performing compression on server side during pg_basebackup

● Support for structured server log output using the JSON format

● Performance improvements, particularly for in-memory and on-disk sorting

● The full list of new/enhanced features and other changes can be found here

https://www.postgresql.org/docs/release/15.0/

● Key features in PostgreSQL 15

● Performance improvements in PostgreSQL 15

● PostgreSQL 16 and beyond

Agenda

Disclaimer: This section is based on what I could see
being proposed in community at this stage

29 © Fujitsu 2022
Fujitsu-Public

PostgreSQL 16 and beyond

● Various improvements in Logical Replication

● Allow same table replication by filtering based on origins

● Parallel Apply

● Replication of sequences

● Enable logical replication from standby

● DDL Replication

● Use of indexes on subscriber when publisher has specified replica identity full

● Replication of other objects like LOBs

● …

● Reduced number of commands that need superuser privilege

● SQL/JSON improvements to make it more standard compliant

1/3

30 © Fujitsu 2022
Fujitsu-Public

PostgreSQL 16 and beyond

● Transparent column encryption

● Automatic, transparent encryption and decryption of particular columns in the client

● Change build infrastructure by replacing it with Meson build system

● Developer-oriented feature

● Asynchronous I/O

● Will allow prefetching data and will improve system performance

● Direct I/O

● Will bypass the OS cache and lead to better performance in some cases

● Various improvements in Hash indexes

● Allow unique indexes

● Allow multi-column indexes

2/3

31 © Fujitsu 2022
Fujitsu-Public

PostgreSQL 16 and beyond

● Improvements in vacuum technology by using performance data structure, advancing relfrozenxid

earlier, and by reducing WAL volume

● Improvements in partitioning technology

● Improve statistics/monitoring

● 64bit XIDs

● Can avoid freezing and reduce the need of autovacuum

● TDE

● Can help in meeting security compliance in many organizations

● Incremental maintenance of materialized views

3/3

Fujitsu-Public 32 © Fujitsu 2022

Thank you

PostgreSQL 15 and beyond

Amit Kapila
PostgreSQL Committer and Major Contributor

